n-ABSORBING MONOMIAL IDEALS IN POLYNOMIAL RINGS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On annihilator ideals in skew polynomial rings

This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...

متن کامل

Results on n-Absorbing Ideals of Commutative Rings

RESULTS ON N-ABSORBING IDEALS OF COMMUTATIVE RINGS by Alison Elaine Becker The University of Wisconsin-Milwaukee, 2015 Under the Supervision of Dr. Allen Bell Let R be a commutative ring with 1 6= 0. In his paper On 2-absorbing ideals of commutative rings, Ayman Badawi introduces a generalization of prime ideals called 2-absorbing ideals, and this idea is further generalized in a paper by Ander...

متن کامل

An Algorithm for the Quillen-Suslin Theorem for Quotients of Polynomial Rings by Monomial Ideals

This paper presents an algorithm for the Quillen-Suslin Theorem for quotients of polynomial rings by monomial ideals, that is, quotients of the form A = kx 0 ; :::;xn]=I, with I a monomial ideal and k a eld. T. Vorst proved that nitely generated projective modules over such algebras are free. Given a nitely generated module P, described by generators and relations, the algorithm tests whether P...

متن کامل

A Property of Ideals in Polynomial Rings

Every ideal in the polynomial ring in n variables over an infinite field has a reduction generated by n elements. Eisenbud and Evans [2] proved that every ideal in k[Xx,...,Xn] can be generated up to radical by n elements (where k is a field). Avinash Sathaye [7] and Mohan Kumar [5] proved a locally complete intersection in k[ Xv ..., Xn] can be generated by n elements. In this short note we sh...

متن کامل

On primitive ideals in polynomial rings over nil rings

Let R be a nil ring. We prove that primitive ideals in the polynomial ring R[x] in one indeterminate over R are of the form I [x] for some ideals I of R. All considered rings are associative but not necessarily have identities. Köthe’s conjecture states that a ring without nil ideals has no one-sided nil ideals. It is equivalent [4] to the assertion that polynomial rings over nil rings are Jaco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Electronic Journal of Algebra

سال: 2019

ISSN: 1306-6048

DOI: 10.24330/ieja.587073